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Abstract

Model reduction with Reduced Basis-Methods

We want to discuss parametrized partial differential equations (P?DEs) for parame-
ters that describe the geometry of the underlying problem. One can think of appli-
cations in control theory and shape optimization which depend on time-consuming
parameter-studies of such problems. Therefore, we want to reduce the order of com-
plexity of the numerical simulations for such P?DEs.

Reduced Basis (RB) methods are a means to achieve this goal. These methods have
gained popularity over the last few years for
model reduction of finite element approxi-
mations of elliptic and instationary parabolic I i H= 0
equatlops. We presgnt a RB method for Q1) Q1) Q1)
parabolic problems with general geometry

parameterization and finite volume (FV) ap-

proximations. Experimental results are presented for a simple test problem.

Test problem and geometry transformation

We focus on a two dimensional instationary heat equation as a model problem:

Problem 1 (Instationary heat equation). For every i € P we want to determine a solu-
tion u(z, t; 1) on a polygonal domain (i) C R*foralltimest € T := [0, Tinax), Tinax >
0, which satisfies the equations

Oz, t; 1) — a(p)Au(z, t; pu) =0 in Q(p) x T (1a)
w(@, 0; p) = uo(z; p) in Q(p). (1b)

and certain boundary conditions.

In order to apply the RB method, however, the function space must not depend on
the parameter. Therefore, we reformulate the problem on a reference domain, which
results in a convection-diffusion-reaction equation with an (in general) anisotropic
diffusion tensor.

Figure: Illustration of
a geometry transfor-

mation .
We select an arbitrary parameter i € P that defines the reference domain Q2 =

Q(j1). It is assumed that for every parameter p there exists a diffeomorphism ®(u) :
() — Q(u). By transforming the heat equation onto the reference domain, we get the
following

Lemma 2 (Geometry transformation). Let u be a solution of problem 1. Then the func-
tion u(z,t) .= u(d(2),t; p), with coordinates © := ®~1(x) on the reference domain, is
a solution of the equivalent convection—diffusion—reaction equation

Oyis — a(p)V; - (GG'V30) + a(u) Vs - (vir) — a(p) (Ve -v)i=0 mQxT. (2)
with notations

@ = (oD Fe) (1) ww=cen, o

with G(SIAZ) = (Gi(f))i,jzl

, being the Jacobi matrix of the inverse geometry transfor-
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Scenario:

e Parametrized partial differential equations: shape, material or control parameters
nwe P CRP

Owu(p) + L(p)[u(p)] =0  +initial and boundary conditions

e Simulation requests need to be answered rapidly or repeatedly for many differ-
ent parameters, e.g. design optimization, control, parameter estimation, real-time
applications.

Goals:

e Automatic computation of reduced
basis for approximation of numer-
ical simulations Uy (u) by reduced
simulation Uy (u)

{UF (1) |neP0<k<K} —+ LA

e Offline-Online decomposition of
computations

e rigorous a-posteriori error estimators

Empirical interpolation

Base functions of W),:

e Reduced simulation in RB space is possible, )

if the discrete operators and the problem 1 & 1.0 &
data functions 0.5 0.5
— are linear and o5 10 05 10
— depend affinely on the parameter. / Llu(p))(z1)
|
e If not = Empirical interpolation of operators - £lulul(z2) / L)
Ll Llu(p)]]

Idea: Approximate operator with few point
evaluations

e Build collateral RB space of operator evalu-
M
ations W), 1= span {L(M)[U i(u @)}-_1

e Interpolate efficiently if operator is lo-
Ca“SEd, by .- x

0.2 04 06 08 1.0

TulLU)) = Xy LU (@) () Cn oo

Implementation and results

The implementation of the experiments is integrated into our package RBmatlab that
provides FV discretizations, algorithms for RB generations, empirical interpolation
and a demonstration GUI for online simulations. We chose a high dimensional func-
tion space with 8000 degrees of freedom and used 16 detailed simulations during the
offline phase.

Time gain factor:
X O
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Average approxi-
mation error:
~ 1077

Numerical solutions for . = O 2 0. 2 at tlmestepst = O O t = O 45 t = O 9.
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